Non-dominated Sorting Bee Colony optimization in the presence of noise
نویسندگان
چکیده
The paper incorporates new extensional strategies into the traditional multi-objective optimization algorithms to proficiently obtain the Pareto-optimal solutions in the presence of noise in the fitness landscapes. The first strategy, referred to as adaptive selection of sample size, is employed to assess the trade-off between accuracy in fitness estimation and the associated run-time complexity. The second strategy is concerned with determining statistical expectation of fitness samples, instead of their conventional averaging, as the fitness measure of the trial solutions. The third strategy aims at improving Goldberg’s approach to examine possible accommodation of a seemingly inferior solution in the optimal Pareto front using amore statistically viable comparator. The traditional Non-dominated Sorting Bee Colony algorithm has been ameliorated by extending its selection step with the proposed strategies. Experiments undertaken to study the performance of the proposed algorithm reveal that the extended algorithm outperforms its contenders with respect to four performance metrics, when examined on a test suite of 23 standard benchmarks with additive noise of three statistical distributions.
منابع مشابه
A Non-dominated Sorting Ant Colony Optimization Algorithm Approach to the Bi-objective Multi-vehicle Allocation of Customers to Distribution Centers
Distribution centers (DCs) play important role in maintaining the uninterrupted flow of goods and materials between the manufacturers and their customers.This paper proposes a mathematical model as the bi-objective capacitated multi-vehicle allocation of customers to distribution centers. An evolutionary algorithm named non-dominated sorting ant colony optimization (NSACO) is used as the optimi...
متن کاملMulti-objective Reconfiguration of Distribution Network Using a Heuristic Modified Ant Colony Optimization Algorithm
In this paper, a multi-objective reconfiguration problem has been solved simultaneously by a modified ant colony optimization algorithm. Two objective functions, real power loss and energy not supplied index (ENS), were utilized. Multi-objective modified ant colony optimization algorithm has been generated by adding non-dominated sorting technique and changing the pheromone updating rule of ori...
متن کاملA Multi-Objective Evolutionary Approach to Evaluate the Designing Perspective of Protein-Protein Interaction Network
Proteins interact with each other in a highly specific manner, and protein interactions play a key role in many cellular processes. Since protein interactions determine the outcome of most cellular processes, so identifying and characterizing Protein– Protein interactions and their networks are essential for understanding the mechanisms of biological processes on a molecular level. This paper e...
متن کاملSolving Multi-objective Optimal Control Problems of chemical processes using Hybrid Evolutionary Algorithm
Evolutionary algorithms have been recognized to be suitable for extracting approximate solutions of multi-objective problems because of their capability to evolve a set of non-dominated solutions distributed along the Pareto frontier. This paper applies an evolutionary optimization scheme, inspired by Multi-objective Invasive Weed Optimization (MOIWO) and Non-dominated Sorting (NS) strategi...
متن کاملElite-guided multi-objective artificial bee colony algorithm
Multi-objective optimization has been a difficult problem and a research focus in the field of science and engineering. This paper presents a novel multi-objective optimization algorithm called elite-guided multi-objective artificial bee colony (EMOABC) algorithm. In our proposal, the fast non-dominated sorting and population selection strategy are applied to measure the quality of the solution...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Soft Comput.
دوره 20 شماره
صفحات -
تاریخ انتشار 2016